Python Complete Example
Using OpenAI SDK
Copy
pip install openai
Complete Text-to-Video Example
Copy
from openai import OpenAI
import time
class Veo31Client:
def __init__(self, api_key):
self.client = OpenAI(
api_key=api_key,
base_url="https://api.laozhang.ai/v1"
)
def generate_video_from_text(self, prompt, model="veo-3.1", n=1):
"""Text-to-video generation"""
try:
response = self.client.chat.completions.create(
model=model,
messages=[{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
}
]
}],
stream=True,
n=n
)
print(f"Starting video generation... (model: {model})")
for chunk in response:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
print(f"Received data: {content}")
print("Video generation complete!")
except Exception as e:
print(f"Error: {e}")
def generate_video_from_images(self, prompt, image_urls, model="veo-3.1-fl"):
"""Image-to-video generation"""
try:
content = [
{
"type": "text",
"text": prompt
}
]
# Add images
for url in image_urls:
content.append({
"type": "image_url",
"image_url": {
"url": url
}
})
response = self.client.chat.completions.create(
model=model,
messages=[{
"role": "user",
"content": content
}],
stream=True
)
print(f"Starting video generation... (model: {model}, images: {len(image_urls)})")
for chunk in response:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
print(f"Received data: {content}")
print("Video generation complete!")
except Exception as e:
print(f"Error: {e}")
# Usage examples
if __name__ == "__main__":
client = Veo31Client("sk-YOUR_API_KEY")
# Example 1: Text-to-video
print("=== Example 1: Text-to-Video ===")
client.generate_video_from_text(
prompt="Generate a video of a cute kitten playing on the grass",
model="veo-3.1",
n=2
)
# Example 2: Image-to-video
print("\n=== Example 2: Image-to-Video ===")
client.generate_video_from_images(
prompt="Generate a smooth transition video based on two images",
image_urls=[
"https://example.com/start.jpg",
"https://example.com/end.jpg"
],
model="veo-3.1-fl"
)
Using Base64 Images
Copy
import base64
from openai import OpenAI
def encode_image_to_base64(image_path):
"""Encode local image to base64"""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
client = OpenAI(
api_key="sk-YOUR_API_KEY",
base_url="https://api.laozhang.ai/v1"
)
# Read local images
image1_base64 = encode_image_to_base64("./images/start.jpg")
image2_base64 = encode_image_to_base64("./images/end.jpg")
response = client.chat.completions.create(
model="veo-3.1-fl",
messages=[{
"role": "user",
"content": [
{
"type": "text",
"text": "Generate transition animation based on these two images"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image1_base64}"
}
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image2_base64}"
}
}
]
}],
stream=True
)
for chunk in response:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end='', flush=True)
Node.js Complete Example
Install Dependencies
Copy
npm install openai
TypeScript Complete Implementation
Copy
import OpenAI from 'openai';
import * as fs from 'fs';
class Veo31Client {
private client: OpenAI;
constructor(apiKey: string) {
this.client = new OpenAI({
apiKey: apiKey,
baseURL: 'https://api.laozhang.ai/v1'
});
}
async generateVideoFromText(
prompt: string,
model: string = 'veo-3.1',
n: number = 1
): Promise<void> {
try {
const stream = await this.client.chat.completions.create({
model: model,
messages: [{
role: 'user',
content: [
{
type: 'text',
text: prompt
}
]
}],
stream: true,
n: n
});
console.log(`Starting video generation... (model: ${model})`);
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content;
if (content) {
console.log(`Received data: ${content}`);
}
}
console.log('Video generation complete!');
} catch (error) {
console.error('Error:', error);
}
}
async generateVideoFromImages(
prompt: string,
imageUrls: string[],
model: string = 'veo-3.1-fl'
): Promise<void> {
try {
const content: any[] = [
{
type: 'text',
text: prompt
}
];
// Add images
for (const url of imageUrls) {
content.push({
type: 'image_url',
image_url: {
url: url
}
});
}
const stream = await this.client.chat.completions.create({
model: model,
messages: [{
role: 'user',
content: content
}],
stream: true
});
console.log(`Starting video generation... (model: ${model}, images: ${imageUrls.length})`);
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content;
if (content) {
console.log(`Received data: ${content}`);
}
}
console.log('Video generation complete!');
} catch (error) {
console.error('Error:', error);
}
}
encodeImageToBase64(imagePath: string): string {
const imageBuffer = fs.readFileSync(imagePath);
return imageBuffer.toString('base64');
}
}
// Usage examples
async function main() {
const client = new Veo31Client('sk-YOUR_API_KEY');
// Example 1: Text-to-video
console.log('=== Example 1: Text-to-Video ===');
await client.generateVideoFromText(
'Generate a romantic sunset scene by the sea',
'veo-3.1',
2
);
// Example 2: Image-to-video
console.log('\n=== Example 2: Image-to-Video ===');
await client.generateVideoFromImages(
'Generate smooth transition animation based on these two images',
[
'https://example.com/image1.jpg',
'https://example.com/image2.jpg'
],
'veo-3.1-fl'
);
}
main().catch(console.error);
JavaScript Simplified Version
Copy
const OpenAI = require('openai');
const client = new OpenAI({
apiKey: 'sk-YOUR_API_KEY',
baseURL: 'https://api.laozhang.ai/v1'
});
async function generateVideo() {
const stream = await client.chat.completions.create({
model: 'veo-3.1-fast',
messages: [{
role: 'user',
content: [
{
type: 'text',
text: 'Generate a video of a cat walking in the rain'
}
]
}],
stream: true,
n: 1
});
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content;
if (content) {
process.stdout.write(content);
}
}
}
generateVideo().catch(console.error);
cURL Examples
Text-to-Video
Copy
curl --location --request POST 'https://api.laozhang.ai/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-YOUR_API_KEY' \
--data-raw '{
"messages": [{
"role": "user",
"content": [
{
"type": "text",
"text": "Generate a video of two cats and a dog fighting"
}
]
}],
"model": "veo-3.1",
"stream": true,
"n": 2
}'
Image-to-Video (URL)
Copy
curl --location --request POST 'https://api.laozhang.ai/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-YOUR_API_KEY' \
--data-raw '{
"messages": [{
"role": "user",
"content": [
{
"type": "text",
"text": "Generate a complete transition video based on two images"
},
{
"type": "image_url",
"image_url": {
"url": "https://example.com/start-frame.jpg"
}
},
{
"type": "image_url",
"image_url": {
"url": "https://example.com/end-frame.jpg"
}
}
]
}],
"model": "veo-3.1-fl",
"stream": true,
"n": 1
}'
Image-to-Video (Base64)
Copy
curl --location --request POST 'https://api.laozhang.ai/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-YOUR_API_KEY' \
--data-raw '{
"messages": [{
"role": "user",
"content": [
{
"type": "text",
"text": "Generate animation based on image"
},
{
"type": "image_url",
"image_url": {
"url": "..."
}
}
]
}],
"model": "veo-3.1-landscape",
"stream": true
}'
Go Example
Copy
package main
import (
"context"
"fmt"
"io"
"os"
"github.com/sashabaranov/go-openai"
)
func main() {
config := openai.DefaultConfig("sk-YOUR_API_KEY")
config.BaseURL = "https://api.laozhang.ai/v1"
client := openai.NewClientWithConfig(config)
req := openai.ChatCompletionRequest{
Model: "veo-3.1",
Messages: []openai.ChatCompletionMessage{
{
Role: openai.ChatMessageRoleUser,
MultiContent: []openai.ChatMessagePart{
{
Type: openai.ChatMessagePartTypeText,
Text: "Generate a video of a cute kitten playing with a ball of yarn",
},
},
},
},
Stream: true,
N: 1,
}
stream, err := client.CreateChatCompletionStream(context.Background(), req)
if err != nil {
fmt.Printf("Stream error: %v\n", err)
return
}
defer stream.Close()
fmt.Println("Starting video generation...")
for {
response, err := stream.Recv()
if err == io.EOF {
fmt.Println("\nVideo generation complete!")
break
}
if err != nil {
fmt.Printf("Stream error: %v\n", err)
return
}
if len(response.Choices) > 0 {
content := response.Choices[0].Delta.Content
if content != "" {
fmt.Print(content)
}
}
}
}
Image-to-Video Go Example
Copy
package main
import (
"context"
"encoding/base64"
"fmt"
"io"
"os"
"github.com/sashabaranov/go-openai"
)
func encodeImageToBase64(imagePath string) (string, error) {
imageData, err := os.ReadFile(imagePath)
if err != nil {
return "", err
}
return base64.StdEncoding.EncodeToString(imageData), nil
}
func main() {
config := openai.DefaultConfig("sk-YOUR_API_KEY")
config.BaseURL = "https://api.laozhang.ai/v1"
client := openai.NewClientWithConfig(config)
// Encode images
image1Base64, _ := encodeImageToBase64("./start.jpg")
image2Base64, _ := encodeImageToBase64("./end.jpg")
req := openai.ChatCompletionRequest{
Model: "veo-3.1-fl",
Messages: []openai.ChatCompletionMessage{
{
Role: openai.ChatMessageRoleUser,
MultiContent: []openai.ChatMessagePart{
{
Type: openai.ChatMessagePartTypeText,
Text: "Generate transition video based on these two images",
},
{
Type: openai.ChatMessagePartTypeImageURL,
ImageURL: &openai.ChatMessageImageURL{
URL: fmt.Sprintf("data:image/jpeg;base64,%s", image1Base64),
},
},
{
Type: openai.ChatMessagePartTypeImageURL,
ImageURL: &openai.ChatMessageImageURL{
URL: fmt.Sprintf("data:image/jpeg;base64,%s", image2Base64),
},
},
},
},
},
Stream: true,
}
stream, err := client.CreateChatCompletionStream(context.Background(), req)
if err != nil {
fmt.Printf("Error: %v\n", err)
return
}
defer stream.Close()
fmt.Println("Starting video generation...")
for {
response, err := stream.Recv()
if err == io.EOF {
fmt.Println("\nComplete!")
break
}
if err != nil {
fmt.Printf("Error: %v\n", err)
return
}
if len(response.Choices) > 0 {
fmt.Print(response.Choices[0].Delta.Content)
}
}
}
Java Example
Using OkHttp
Copy
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import okhttp3.*;
import okio.BufferedSource;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;
public class Veo31Client {
private final OkHttpClient client;
private final String apiKey;
private final Gson gson;
private static final String BASE_URL = "https://api.laozhang.ai/v1";
public Veo31Client(String apiKey) {
this.apiKey = apiKey;
this.client = new OkHttpClient.Builder()
.connectTimeout(30, TimeUnit.SECONDS)
.readTimeout(60, TimeUnit.SECONDS)
.build();
this.gson = new Gson();
}
public void generateVideoFromText(String prompt, String model, int n) throws IOException {
Map<String, Object> content = new HashMap<>();
content.put("type", "text");
content.put("text", prompt);
List<Map<String, Object>> contents = new ArrayList<>();
contents.add(content);
Map<String, Object> message = new HashMap<>();
message.put("role", "user");
message.put("content", contents);
List<Map<String, Object>> messages = new ArrayList<>();
messages.add(message);
Map<String, Object> requestBody = new HashMap<>();
requestBody.put("model", model);
requestBody.put("messages", messages);
requestBody.put("stream", true);
requestBody.put("n", n);
String json = gson.toJson(requestBody);
Request request = new Request.Builder()
.url(BASE_URL + "/chat/completions")
.post(RequestBody.create(json, MediaType.parse("application/json")))
.addHeader("Authorization", "Bearer " + apiKey)
.addHeader("Content-Type", "application/json")
.build();
try (Response response = client.newCall(request).execute()) {
if (!response.isSuccessful()) {
throw new IOException("Request failed: " + response);
}
System.out.println("Starting video generation...");
BufferedSource source = response.body().source();
while (!source.exhausted()) {
String line = source.readUtf8Line();
if (line != null && line.startsWith("data: ")) {
String data = line.substring(6);
if (!data.equals("[DONE]")) {
System.out.print(data);
}
}
}
System.out.println("\nVideo generation complete!");
}
}
public static void main(String[] args) throws IOException {
Veo31Client client = new Veo31Client("sk-YOUR_API_KEY");
// Generate video
client.generateVideoFromText(
"Generate a video of a cute panda playing in a bamboo forest",
"veo-3.1",
1
);
}
}
Response Format
Streaming Response Example
Copy
data: {"id":"chatcmpl-xxx","object":"chat.completion.chunk","created":1234567890,"model":"veo-3.1","choices":[{"index":0,"delta":{"content":"Video generating..."},"finish_reason":null}]}
data: {"id":"chatcmpl-xxx","object":"chat.completion.chunk","created":1234567890,"model":"veo-3.1","choices":[{"index":0,"delta":{"content":"Video URL: https://..."},"finish_reason":"stop"}]}
data: [DONE]
Advanced Usage
Batch Generate Multiple Results
Copy
from openai import OpenAI
client = OpenAI(
api_key="sk-YOUR_API_KEY",
base_url="https://api.laozhang.ai/v1"
)
response = client.chat.completions.create(
model="veo-3.1-fast",
messages=[{
"role": "user",
"content": [{"type": "text", "text": "Generate a sunset scene"}]
}],
stream=True,
n=4 # Generate 4 different videos simultaneously
)
for chunk in response:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content)
Compare Different Models
Copy
models = [
"veo-3.1",
"veo-3.1-fast",
"veo-3.1-fl",
"veo-3.1-landscape"
]
prompt = "Generate a beautiful mountain landscape video"
for model in models:
print(f"\n=== Testing model: {model} ===")
response = client.chat.completions.create(
model=model,
messages=[{
"role": "user",
"content": [{"type": "text", "text": prompt}]
}],
stream=True
)
for chunk in response:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end='')