Skip to main content

Model Overview

Claude is a series of AI assistants developed by Anthropic, known for their safety, accuracy, and powerful reasoning capabilities. From the flagship Claude 3.5 Sonnet to the fast Claude 3 Haiku, Claude models excel in code generation, long document analysis, complex reasoning, and more.
Dual Compatibility: Supports both OpenAI format and Claude native format, choose according to your preference.

Model Classification

Claude 3.5 Series

Latest flagship model, strongest overall capabilities
  • Core Features:
    • 200K context window
    • Outstanding code generation capabilities
    • Strong reasoning and analysis abilities
    • Excellent long document processing
    • Supports image understanding
  • Pricing:
    • Input: $3/1M tokens
    • Output: $15/1M tokens
  • Suitable Scenarios:
    • Complex code generation
    • Technical document analysis
    • Legal contract review
    • Academic research
    • Multi-turn complex conversations
Fast model, best cost-performance in Claude series
  • Core Features:
    • 200K context window
    • Fastest response speed
    • Excellent cost-performance ratio
    • Stable and reliable
  • Pricing:
    • Input: $1/1M tokens
    • Output: $5/1M tokens
  • Suitable Scenarios:
    • Daily conversations
    • Quick queries
    • Batch processing
    • Customer service bots

Claude 3 Series

Strongest reasoning capabilities, suitable for most complex tasks
  • Core Features:
    • 200K context window
    • Top-tier reasoning ability
    • Strong multimodal understanding
    • Excels at complex problem-solving
  • Pricing:
    • Input: $15/1M tokens
    • Output: $75/1M tokens
  • Suitable Scenarios:
    • Advanced research
    • Complex decision analysis
    • Professional consulting
    • Critical business scenarios
Balanced model with excellent overall performance
  • Core Features:
    • 200K context window
    • Balanced performance and cost
    • Strong reasoning ability
    • Good image understanding
  • Pricing:
    • Input: $3/1M tokens
    • Output: $15/1M tokens
  • Suitable Scenarios:
    • Daily business applications
    • Document analysis
    • Content generation
    • Technical support
Fast and economical, suitable for high-frequency calls
  • Core Features:
    • 200K context window
    • Extremely fast response
    • Ultra-low price
    • Stable quality
  • Pricing:
    • Input: $0.25/1M tokens
    • Output: $1.25/1M tokens
  • Suitable Scenarios:
    • Real-time conversations
    • Quick queries
    • Mass text processing
    • Low-budget projects

Usage Methods

Use the familiar OpenAI SDK, fully compatible:
from openai import OpenAI

client = OpenAI(
    api_key="YOUR_API_KEY",
    base_url="https://api.laozhang.ai/v1"
)

# Use Claude 3.5 Sonnet
response = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",
    messages=[
        {"role": "system", "content": "You are a helpful assistant"},
        {"role": "user", "content": "Explain quantum entanglement"}
    ],
    temperature=0.7,
    max_tokens=1000
)

print(response.choices[0].message.content)

Method 2: Claude Native Format

Use Anthropic’s official SDK for more native experience:
import anthropic

client = anthropic.Anthropic(
    api_key="YOUR_API_KEY",
    base_url="https://api.laozhang.ai/v1"
)

# Use Claude native format
message = client.messages.create(
    model="claude-3-5-sonnet-20241022",
    max_tokens=1024,
    messages=[
        {"role": "user", "content": "Explain quantum entanglement"}
    ]
)

print(message.content[0].text)

Application Scenarios

1. Code Generation and Review

Claude 3.5 Sonnet excels at code-related tasks:
response = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",
    messages=[
        {
            "role": "user",
            "content": """
            Write a Python function to implement:
            1. Binary search algorithm
            2. Include detailed comments
            3. Provide usage examples
            4. Time complexity analysis
            """
        }
    ],
    temperature=0.5  # Lower temperature for more accurate code
)

print(response.choices[0].message.content)

2. Long Document Analysis

Leverage Claude’s 200K context window to process long documents:
# Read long document
with open('long_document.txt', 'r', encoding='utf-8') as f:
    document = f.read()

response = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",
    messages=[
        {
            "role": "user",
            "content": f"""
            Please analyze the following document and provide:
            1. Summary (3-5 sentences)
            2. Key information extraction
            3. Insights and recommendations
            
            Document content:
            {document}
            """
        }
    ],
    max_tokens=2000
)

print(response.choices[0].message.content)

3. Complex Data Analysis

data_analysis_prompt = """
Please analyze the following sales data and provide:
1. Growth trends
2. Key insights
3. Potential problems
4. Optimization recommendations

Sales data:
Q1: 1000 units, revenue $50,000
Q2: 1200 units, revenue $58,000
Q3: 900 units, revenue $42,000
Q4: 1500 units, revenue $75,000
"""

response = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",
    messages=[{"role": "user", "content": data_analysis_prompt}],
    temperature=0.3  # Lower temperature for more objective analysis
)

print(response.choices[0].message.content)

4. Creative Writing

response = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",
    messages=[
        {
            "role": "user",
            "content": """
            Write a 500-word short story:
            - Theme: Future city
            - Style: Cyberpunk
            - Conflict: Human-AI relationship
            """
        }
    ],
    temperature=1.0  # Higher temperature for more creativity
)

print(response.choices[0].message.content)

5. Image Understanding

Claude 3 series models support image understanding:
response = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "What's in this image? Provide detailed description."},
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://example.com/image.jpg"
                    }
                }
            ]
        }
    ]
)

print(response.choices[0].message.content)

Claude’s Unique Advantages

1. Built-in Safety

Claude models have strong content safety filtering built-in, effectively reducing risks of generating inappropriate content
  • Automatically identifies and refuses harmful requests
  • Reduces risk of generating biased content
  • Suitable for scenarios with high safety requirements

2. Precise Instruction Following

Claude excels at understanding and executing complex, multi-step instructions:
complex_task = """
Please complete the following tasks in order:
1. Write a Python function to check if a string is a palindrome
2. Write unit tests for this function
3. Explain the function's time and space complexity
4. Provide optimization suggestions
"""

response = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",
    messages=[{"role": "user", "content": complex_task}]
)

3. Deep Reasoning Ability

Claude excels at handling problems requiring complex reasoning:
  • Mathematical proof
  • Logical reasoning
  • Ethical dilemma analysis
  • Strategy planning

4. Excellent Multilingual Ability

Claude has excellent language capabilities beyond English:
# Chinese dialogue
response = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",
    messages=[
        {"role": "user", "content": "请介绍一下中国的四大发明"}
    ]
)

Usage Tips

1. Choose the Right Model

ScenarioRecommended ModelReason
Code generationClaude 3.5 SonnetStrongest code capabilities
Long documentsClaude 3.5 Sonnet200K context
Daily conversationsClaude 3.5 HaikuCost-effective, fast
Complex reasoningClaude 3 OpusStrongest reasoning
Batch processingClaude 3 HaikuFastest speed, lowest price
Professional consultingClaude 3.5 SonnetAccurate and reliable

2. Optimize Prompts

Use numbered lists or step-by-step descriptions:
Please complete the following tasks:
1. Analyze the problem
2. Propose solutions
3. List pros and cons
4. Give recommendations
Give sufficient background information:
Background: Our company is an e-commerce platform with 10,000 daily active users
Problem: User retention is declining
Question: How to improve user retention?
Clearly state the desired output format:
Please output in the following JSON format:
{
  "summary": "Brief summary",
  "details": ["Detail 1", "Detail 2"],
  "recommendation": "Recommendation"
}

3. Parameter Tuning

temperature
number
default:"1"
Control output randomness:
  • 0-0.3: Very deterministic (code, analysis, facts)
  • 0.7: Balanced (general conversation)
  • 1.0-1.5: More creative (creative writing, brainstorming)
max_tokens
integer
Control output length:
  • Code generation: 1000-2000
  • Article writing: 2000-4000
  • Detailed analysis: 4000-8000
top_p
number
default:"1"
Alternative to temperature:
  • 0.9: Balanced
  • 0.95: More diverse
  • Generally use either temperature or top_p, not both

Cost Optimization

1. Model Selection Strategy

Development Phase

Use Claude 3.5 Haiku
  • Fast testing iteration
  • Low cost
  • Quick feedback

Production Phase

Choose based on needs:
  • Simple tasks → 3.5 Haiku
  • Complex tasks → 3.5 Sonnet
  • Critical tasks → 3 Opus

2. Context Management

# ❌ Inefficient: Passing too much history
def chat_inefficient(user_input, all_history):
    messages = all_history  # May be very long
    messages.append({"role": "user", "content": user_input})
    return client.chat.completions.create(model="claude-3-5-sonnet", messages=messages)

# ✅ Efficient: Only keep necessary context
def chat_efficient(user_input, recent_history):
    messages = [
        {"role": "system", "content": "You are a helpful assistant"},
        *recent_history[-6:],  # Only recent 3 rounds (6 messages)
        {"role": "user", "content": user_input}
    ]
    return client.chat.completions.create(model="claude-3-5-sonnet", messages=messages)

3. Caching Strategy

For repeated queries, consider caching results:
import hashlib
import json

# Simple cache implementation
cache = {}

def get_cached_response(messages, model="claude-3-5-sonnet"):
    # Generate cache key
    cache_key = hashlib.md5(
        json.dumps(messages).encode()
    ).hexdigest()
    
    # Check cache
    if cache_key in cache:
        return cache[cache_key]
    
    # Call API
    response = client.chat.completions.create(
        model=model,
        messages=messages
    )
    
    # Save to cache
    cache[cache_key] = response
    return response

Error Handling

Common Errors and Solutions

Solution: Implement exponential backoff retry
import time
from openai import RateLimitError

def chat_with_retry(messages, max_retries=3):
    for i in range(max_retries):
        try:
            return client.chat.completions.create(
                model="claude-3-5-sonnet-20241022",
                messages=messages
            )
        except RateLimitError:
            if i < max_retries - 1:
                wait_time = (2 ** i) * 2  # 2, 4, 8 seconds
                print(f"Rate limited, waiting {wait_time} seconds...")
                time.sleep(wait_time)
            else:
                raise
Common Causes:
  • Incorrect model name
  • Message format error
  • Parameter out of range
Solution: Check parameters carefully
# Correct format
response = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",  # Correct model name
    messages=[
        {"role": "user", "content": "Hello"}  # Correct message format
    ],
    max_tokens=1000  # Within valid range
)
Solution: Implement retry with delay
import time
from openai import APIError

def chat_with_error_handling(messages):
    for i in range(3):
        try:
            return client.chat.completions.create(
                model="claude-3-5-sonnet-20241022",
                messages=messages
            )
        except APIError as e:
            if i < 2:
                print(f"Server error, retrying... ({i+1}/3)")
                time.sleep(2)
            else:
                raise

Best Practices

1. System Prompt Best Practices

# Good system prompt example
system_prompt = """
You are a professional Python programming assistant with the following characteristics:
1. Provide clear, runnable code
2. Include detailed comments
3. Follow PEP 8 standards
4. Consider edge cases
5. Give usage examples
"""

response = client.chat.completions.create(
    model="claude-3-5-sonnet-20241022",
    messages=[
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": "Write a function to merge two sorted arrays"}
    ]
)

2. Multi-turn Conversation Management

# Maintain conversation history
conversation_history = [
    {"role": "system", "content": "You are a helpful assistant"}
]

def chat(user_input):
    # Add user message
    conversation_history.append({
        "role": "user",
        "content": user_input
    })
    
    # Get response
    response = client.chat.completions.create(
        model="claude-3-5-sonnet-20241022",
        messages=conversation_history
    )
    
    # Add assistant response
    assistant_message = response.choices[0].message.content
    conversation_history.append({
        "role": "assistant",
        "content": assistant_message
    })
    
    return assistant_message

# Usage
print(chat("What is quantum computing?"))
print(chat("What are its application scenarios?"))  # Continues previous topic

3. Streaming Response

For long responses, use streaming for better user experience:
def chat_stream(user_input):
    stream = client.chat.completions.create(
        model="claude-3-5-sonnet-20241022",
        messages=[{"role": "user", "content": user_input}],
        stream=True
    )
    
    print("Response: ", end="")
    for chunk in stream:
        if chunk.choices[0].delta.content:
            print(chunk.choices[0].delta.content, end="", flush=True)
    print()

# Usage
chat_stream("Write a story about AI")

Compare with GPT-4

DimensionClaude 3.5 SonnetGPT-4o
Price$3/1M (input)$2.5/1M (input)
Context200K tokens128K tokens
Code Generation⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Reasoning Ability⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Safety⭐⭐⭐⭐⭐⭐⭐⭐⭐
Multilingual⭐⭐⭐⭐⭐⭐⭐⭐⭐
Response Speed⭐⭐⭐⭐⭐⭐⭐⭐⭐
Instruction Following⭐⭐⭐⭐⭐⭐⭐⭐⭐
Recommendation:
  • Code generation and review → Claude 3.5 Sonnet
  • Image understanding → GPT-4o
  • Long document analysis → Claude 3.5 Sonnet (larger context)
  • Multilingual support → GPT-4o
  • Cost-sensitive → Claude 3.5 Haiku
I