模型简介

Nano Banana 图像编辑功能基于 Google gemini-2.5-flash-image-preview 模型,通过对话补全接口实现对现有图片的智能编辑和改造。支持单张或多张图片的输入,可以实现图像合成、元素添加、风格转换等高级编辑功能。
🎨 智能图像编辑
上传图片 + 文字描述 = 精准编辑!支持多图合成、元素修改、风格转换等高级功能。

🌟 核心特性

  • 🔄 灵活编辑:支持元素添加/删除、风格转换、图像合成等
  • 🎭 多图处理:可同时处理多张图片,实现融合、拼接等效果
  • 💰 超值价格:$0.025/次,按次计费,价格透明
  • 🚀 快速处理:平均 10 秒完成编辑
  • 📦 Base64 输出:直接返回编辑后的 base64 图片数据

📋 功能对比

功能Nano Banana 编辑GPT-4o 编辑DALL·E 2 编辑Flux 编辑
价格$0.025/次Token计费$0.018/张$0.035/次
多图输入✅ 支持✅ 支持❌ 不支持❌ 原生不支持
响应速度~10秒~20秒较慢中等
返回格式Base64Base64URLURL
中文支持✅ 完美✅ 完美❌ 需翻译❌ 需翻译

🚀 快速开始

准备工作

1

创建令牌

登录 老张API令牌管理 创建按次计费类型的令牌令牌创建界面
2

选择计费方式

重要:必须选择”按次计费”类型,不要选择”按量计费”
3

保存令牌

复制生成的令牌,格式为 sk-xxxxxx,在代码中替换 YOUR_API_KEY
💰 超值价格优势
  • 老张API:$0.025/次(比官网便宜 37.5%)
  • 官网价格:$0.04/次
  • 充值福利:充值 100 美金 +10% 赠送
  • 汇率优势:总体相当于官网 7.3 折

基础示例 - 单图编辑

curl -X POST "https://api.laozhang.ai/v1/chat/completions" \
     -H "Authorization: Bearer sk-YOUR_API_KEY" \
     -H "Content-Type: application/json" \
     -d '{
    "model": "gemini-2.5-flash-image-preview",
    "stream": false,
    "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "add a dog to this image"
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://github.com/dianping/cat/raw/master/cat-home/src/main/webapp/images/logo/cat_logo03.png"
                    }
                }
            ]
        }
    ]
}'

Python 示例 - 多图合成

#!/usr/bin/env python3
import requests
import json
import base64
import re
from datetime import datetime
import sys

# 配置
API_KEY = "sk-YOUR_API_KEY"  # 请替换为你的实际密钥(按次计费类型)
API_URL = "https://api.laozhang.ai/v1/chat/completions"

def edit_images_with_gemini():
    """多图合成编辑示例"""
    
    # 设置请求头
    headers = {
        "Authorization": f"Bearer {API_KEY}",
        "Content-Type": "application/json"
    }
    
    # 请求数据 - 支持多张图片输入
    data = {
        "model": "gemini-2.5-flash-image-preview",
        "stream": False,
        "messages": [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "Combine these 2 images creatively and add a Corgi dog"
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": "https://github.com/dianping/cat/raw/master/cat-home/src/main/webapp/images/logo/cat_logo03.png"
                        }
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": "https://raw.githubusercontent.com/leonindy/camel/master/camel-admin/src/main/webapp/assets/images/camel_logo_blue.png"
                        }
                    }
                ]
            }
        ]
    }
    
    print("正在请求API...")
    
    try:
        # 发送请求
        response = requests.post(API_URL, headers=headers, json=data)
        response.raise_for_status()
        
        print("API请求成功,正在处理响应...")
        
        # 解析响应
        result = response.json()
        
        # 提取内容
        content = result['choices'][0]['message']['content']
        print(f"收到内容: {content[:200]}...")  # 显示前200个字符
        
        # 查找Base64图片数据
        # 方法1: 查找标准格式 
        base64_match = re.search(r'data:image/[^;]+;base64,([A-Za-z0-9+/=]+)', content)
        
        if base64_match:
            base64_data = base64_match.group(1)
            print("找到标准格式的Base64数据")
        else:
            # 方法2: 查找纯Base64数据(长字符串)
            base64_match = re.search(r'([A-Za-z0-9+/=]{100,})', content)
            if base64_match:
                base64_data = base64_match.group(1)
                print("找到纯Base64数据")
            else:
                print("错误: 无法找到Base64图片数据")
                print("完整响应内容:")
                print(json.dumps(result, indent=2, ensure_ascii=False))
                return False
        
        # 生成文件名
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"edited_image_{timestamp}.png"
        
        print("正在保存图片...")
        
        # 解码并保存图片
        try:
            image_data = base64.b64decode(base64_data)
            with open(filename, 'wb') as f:
                f.write(image_data)
            
            print(f"图片已成功保存为: {filename}")
            print(f"文件大小: {len(image_data)} 字节")
            return True
            
        except Exception as e:
            print(f"错误: 保存图片时出现问题: {e}")
            return False
            
    except requests.exceptions.RequestException as e:
        print(f"错误: API请求失败: {e}")
        return False
    except KeyError as e:
        print(f"错误: 响应格式不正确,缺少字段: {e}")
        print("完整响应内容:")
        print(json.dumps(response.json(), indent=2, ensure_ascii=False))
        return False
    except Exception as e:
        print(f"错误: 未知错误: {e}")
        return False

if __name__ == "__main__":
    success = edit_images_with_gemini()
    sys.exit(0 if success else 1)

Bash 脚本 - 批量编辑

#!/bin/bash

# Nano Banana 图像编辑 - Bash版本
# 支持单图/多图编辑,自动保存base64结果

# 设置API密钥(请替换为你的实际【按次计费】的密钥)
API_KEY="sk-YOUR_API_KEY"

# 设置输出文件名
OUTPUT_FILE="edited_image_$(date +%Y%m%d_%H%M%S).png"

echo "正在请求API进行图像编辑..."

# 发送curl请求并保存响应到临时文件
RESPONSE=$(curl -s -X POST "https://api.laozhang.ai/v1/chat/completions" \
     -H "Authorization: Bearer $API_KEY" \
     -H "Content-Type: application/json" \
     -d '{
    "model": "gemini-2.5-flash-image-preview",
    "stream": false,
    "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "Combine 2 images and add a Corgi dog image"
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://github.com/dianping/cat/raw/master/cat-home/src/main/webapp/images/logo/cat_logo03.png"
                    }
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://raw.githubusercontent.com/leonindy/camel/master/camel-admin/src/main/webapp/assets/images/camel_logo_blue.png"
                    }
                }
            ]
        }
    ]
}')

# 检查请求是否成功
if [ $? -ne 0 ]; then
    echo "错误: API请求失败"
    exit 1
fi

echo "API请求成功,正在处理响应..."

# 从响应中提取Base64图片数据
BASE64_DATA=$(echo "$RESPONSE" | python3 -c "
import json
import sys
import re

try:
    data = json.load(sys.stdin)
    content = data['choices'][0]['message']['content']
    
    # 查找Base64图片数据
    base64_match = re.search(r'data:image/[^;]+;base64,([A-Za-z0-9+/=]+)', content)
    if base64_match:
        print(base64_match.group(1))
    else:
        # 尝试查找纯Base64数据
        base64_match = re.search(r'([A-Za-z0-9+/=]{100,})', content)
        if base64_match:
            print(base64_match.group(1))
        else:
            print('ERROR: No Base64 data found')
            sys.exit(1)
except Exception as e:
    print(f'ERROR: {e}')
    sys.exit(1)
")

# 检查是否成功提取Base64数据
if [[ "$BASE64_DATA" == ERROR* ]]; then
    echo "$BASE64_DATA"
    echo "完整响应内容:"
    echo "$RESPONSE"
    exit 1
fi

if [ -z "$BASE64_DATA" ]; then
    echo "错误: 无法从响应中提取Base64图片数据"
    echo "完整响应内容:"
    echo "$RESPONSE"
    exit 1
fi

echo "成功提取Base64数据,正在保存图片..."

# 将Base64数据解码并保存为图片文件
echo "$BASE64_DATA" | base64 -d > "$OUTPUT_FILE"

# 检查文件是否成功创建
if [ -f "$OUTPUT_FILE" ] && [ -s "$OUTPUT_FILE" ]; then
    echo "图片已成功保存为: $OUTPUT_FILE"
    echo "文件大小: $(ls -lh "$OUTPUT_FILE" | awk '{print $5}')"
else
    echo "错误: 图片保存失败"
    exit 1
fi

echo "✨ 编辑完成!"

🎯 编辑场景示例

1. 单图编辑 - 添加元素

def add_element_to_image(image_url, element_description):
    """向图片添加新元素"""
    headers = {
        "Authorization": f"Bearer {API_KEY}",
        "Content-Type": "application/json"
    }
    
    data = {
        "model": "gemini-2.5-flash-image-preview",
        "stream": False,
        "messages": [{
            "role": "user",
            "content": [
                {"type": "text", "text": f"Add {element_description} to this image"},
                {"type": "image_url", "image_url": {"url": image_url}}
            ]
        }]
    }
    
    response = requests.post(API_URL, headers=headers, json=data)
    return extract_base64_from_response(response.json())

# 使用示例
result = add_element_to_image(
    "https://example.com/landscape.jpg",
    "a rainbow in the sky"
)

2. 多图合成 - 创意融合

def creative_merge(image_urls, merge_instruction):
    """创意合并多张图片"""
    content = [{"type": "text", "text": merge_instruction}]
    
    # 添加所有图片
    for url in image_urls:
        content.append({
            "type": "image_url",
            "image_url": {"url": url}
        })
    
    headers = {
        "Authorization": f"Bearer {API_KEY}",
        "Content-Type": "application/json"
    }
    
    data = {
        "model": "gemini-2.5-flash-image-preview",
        "stream": False,
        "messages": [{
            "role": "user",
            "content": content
        }]
    }
    
    response = requests.post(API_URL, headers=headers, json=data)
    return extract_base64_from_response(response.json())

# 使用示例
images = [
    "https://example.com/cat.jpg",
    "https://example.com/background.jpg"
]
result = creative_merge(images, "将猫咪自然地融入到背景中")

3. 风格转换

def style_transfer(image_url, style_description):
    """图片风格转换"""
    headers = {
        "Authorization": f"Bearer {API_KEY}",
        "Content-Type": "application/json"
    }
    
    data = {
        "model": "gemini-2.5-flash-image-preview",
        "stream": False,
        "messages": [{
            "role": "user",
            "content": [
                {"type": "text", "text": f"Transform this image into {style_description} style"},
                {"type": "image_url", "image_url": {"url": image_url}}
            ]
        }]
    }
    
    response = requests.post(API_URL, headers=headers, json=data)
    return extract_base64_from_response(response.json())

# 使用示例
result = style_transfer(
    "https://example.com/photo.jpg",
    "Van Gogh painting"
)

4. 批量编辑处理

class BatchImageEditor:
    """批量图像编辑器"""
    
    def __init__(self, api_key):
        self.api_key = api_key
        self.api_url = "https://api.laozhang.ai/v1/chat/completions"
    
    def process_batch(self, tasks):
        """
        批量处理编辑任务
        tasks: [(image_urls, instruction), ...]
        """
        results = []
        
        for i, (image_urls, instruction) in enumerate(tasks, 1):
            print(f"处理任务 {i}/{len(tasks)}: {instruction[:50]}...")
            
            try:
                result = self.edit_images(image_urls, instruction)
                results.append({
                    "task_id": i,
                    "instruction": instruction,
                    "success": True,
                    "output": result
                })
                print(f"✅ 任务 {i} 完成")
                
            except Exception as e:
                results.append({
                    "task_id": i,
                    "instruction": instruction,
                    "success": False,
                    "error": str(e)
                })
                print(f"❌ 任务 {i} 失败: {e}")
        
        return results
    
    def edit_images(self, image_urls, instruction):
        """编辑图片"""
        if isinstance(image_urls, str):
            image_urls = [image_urls]
        
        content = [{"type": "text", "text": instruction}]
        for url in image_urls:
            content.append({
                "type": "image_url",
                "image_url": {"url": url}
            })
        
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
        }
        
        data = {
            "model": "gemini-2.5-flash-image-preview",
            "stream": False,
            "messages": [{"role": "user", "content": content}]
        }
        
        response = requests.post(self.api_url, headers=headers, json=data)
        response.raise_for_status()
        
        return self.extract_and_save_base64(response.json())
    
    def extract_and_save_base64(self, response_data):
        """提取并保存base64图片"""
        content = response_data['choices'][0]['message']['content']
        
        # 提取base64数据
        base64_match = re.search(r'data:image/[^;]+;base64,([A-Za-z0-9+/=]+)', content)
        if not base64_match:
            base64_match = re.search(r'([A-Za-z0-9+/=]{100,})', content)
        
        if base64_match:
            base64_data = base64_match.group(1)
            
            # 保存图片
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
            filename = f"edited_{timestamp}.png"
            
            image_data = base64.b64decode(base64_data)
            with open(filename, 'wb') as f:
                f.write(image_data)
            
            return filename
        else:
            raise ValueError("未找到base64图片数据")

# 使用示例
editor = BatchImageEditor(API_KEY)

tasks = [
    (["https://example.com/cat.jpg"], "给猫咪戴上帽子"),
    (["https://example.com/room.jpg"], "将房间改为夜晚氛围"),
    (["https://example.com/img1.jpg", "https://example.com/img2.jpg"], "创意融合两张图片")
]

results = editor.process_batch(tasks)

💡 最佳实践

1. 编辑指令优化

# ❌ 模糊指令
instruction = "edit the image"

# ✅ 清晰具体的指令
instruction = """
1. 在图片右上角添加一轮明月
2. 调整整体色调为暖色系
3. 增加一些萤火虫的光点效果
4. 保持原图的主体不变
"""

2. 多图处理策略

def smart_multi_image_edit(images, instruction):
    """智能多图编辑,自动处理不同数量的图片"""
    
    if len(images) == 1:
        # 单图编辑
        prompt = f"Edit this image: {instruction}"
    elif len(images) == 2:
        # 双图合成
        prompt = f"Combine these two images creatively: {instruction}"
    else:
        # 多图处理
        prompt = f"Process these {len(images)} images together: {instruction}"
    
    # 构建content
    content = [{"type": "text", "text": prompt}]
    for img in images:
        content.append({
            "type": "image_url",
            "image_url": {"url": img}
        })
    
    # 发送请求...
    return send_edit_request(content)

3. Base64 数据处理工具

import base64
import io
import re
from datetime import datetime
from PIL import Image

class Base64ImageHandler:
    """Base64图片处理工具类"""
    
    @staticmethod
    def extract_from_response(response_content):
        """从API响应中提取base64数据"""
        patterns = [
            r'data:image/([^;]+);base64,([A-Za-z0-9+/=]+)',
            r'([A-Za-z0-9+/=]{100,})'
        ]
        
        for pattern in patterns:
            match = re.search(pattern, response_content)
            if match:
                if len(match.groups()) == 2:
                    return match.group(2), match.group(1)  # data, format
                else:
                    return match.group(1), 'png'  # default to png
        
        return None, None
    
    @staticmethod
    def save_to_file(base64_data, filename=None):
        """保存base64数据为文件"""
        if not filename:
            filename = f"image_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
        
        image_data = base64.b64decode(base64_data)
        with open(filename, 'wb') as f:
            f.write(image_data)
        
        return filename
    
    @staticmethod
    def to_pil_image(base64_data):
        """转换为PIL Image对象"""
        image_data = base64.b64decode(base64_data)
        return Image.open(io.BytesIO(image_data))
    
    @staticmethod
    def from_pil_image(pil_image, format='PNG'):
        """从PIL Image转换为base64"""
        buffer = io.BytesIO()
        pil_image.save(buffer, format=format)
        img_str = base64.b64encode(buffer.getvalue()).decode()
        return f"data:image/{format.lower()};base64,{img_str}"

⚠️ 注意事项

  1. 令牌类型:必须使用按次计费类型的令牌
  2. 调用端点:使用 /v1/chat/completions,不是 /v1/images/edits
  3. 返回格式:返回 base64 编码的编辑结果

🔍 常见问题

Q: 最多可以同时处理几张图片?

A: 理论上没有硬性限制,但建议单次请求不超过 5 张图片以获得最佳性能。

Q: 编辑后的图片分辨率如何?

A: 系统会智能保持或优化分辨率,通常输出高质量图片,具体取决于输入图片和编辑需求。

Q: 与其他编辑API相比有什么优势?

A: 主要优势包括:更低的价格、更快的处理速度、原生支持多图输入、优秀的中文理解能力。

🔗 相关资源

🎨 专业提示:Nano Banana 编辑功能特别擅长理解复杂的编辑指令和创意要求,充分利用详细的描述可以获得更精准的编辑效果!