跳转到主要内容

Python 完整示例

使用 OpenAI SDK

pip install openai

文生视频完整示例

from openai import OpenAI
import time

class Veo31Client:
    def __init__(self, api_key):
        self.client = OpenAI(
            api_key=api_key,
            base_url="https://api.laozhang.ai/v1"
        )

    def generate_video_from_text(self, prompt, model="veo-3.1", n=1):
        """文生视频"""
        try:
            response = self.client.chat.completions.create(
                model=model,
                messages=[{
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": prompt
                        }
                    ]
                }],
                stream=True,
                n=n
            )

            print(f"开始生成视频... (模型: {model})")

            for chunk in response:
                if chunk.choices[0].delta.content:
                    content = chunk.choices[0].delta.content
                    print(f"收到数据: {content}")

            print("视频生成完成!")

        except Exception as e:
            print(f"错误: {e}")

    def generate_video_from_images(self, prompt, image_urls, model="veo-3.1-fl"):
        """图生视频"""
        try:
            content = [
                {
                    "type": "text",
                    "text": prompt
                }
            ]

            {-# JSX注释: 添加图片 #-}
            for url in image_urls:
                content.append({
                    "type": "image_url",
                    "image_url": {
                        "url": url
                    }
                })

            response = self.client.chat.completions.create(
                model=model,
                messages=[{
                    "role": "user",
                    "content": content
                }],
                stream=True
            )

            print(f"开始生成视频... (模型: {model}, 图片数: {len(image_urls)})")

            for chunk in response:
                if chunk.choices[0].delta.content:
                    content = chunk.choices[0].delta.content
                    print(f"收到数据: {content}")

            print("视频生成完成!")

        except Exception as e:
            print(f"错误: {e}")

{-# JSX注释: 使用示例 #-}
if __name__ == "__main__":
    client = Veo31Client("sk-YOUR_API_KEY")

    {-# JSX注释: 示例1: 文生视频 #-}
    print("=== 示例1: 文生视频 ===")
    client.generate_video_from_text(
        prompt="生成一只可爱的小猫在草地上玩耍的视频",
        model="veo-3.1",
        n=2
    )

    {-# JSX注释: 示例2: 图生视频 #-}
    print("\n=== 示例2: 图生视频 ===")
    client.generate_video_from_images(
        prompt="根据两张图片生成平滑的过渡视频",
        image_urls=[
            "https://example.com/start.jpg",
            "https://example.com/end.jpg"
        ],
        model="veo-3.1-fl"
    )

使用 Base64 图片

import base64
from openai import OpenAI

def encode_image_to_base64(image_path):
    """将本地图片编码为 base64"""
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

client = OpenAI(
    api_key="sk-YOUR_API_KEY",
    base_url="https://api.laozhang.ai/v1"
)

{-# JSX注释: 读取本地图片 #-}
image1_base64 = encode_image_to_base64("./images/start.jpg")
image2_base64 = encode_image_to_base64("./images/end.jpg")

response = client.chat.completions.create(
    model="veo-3.1-fl",
    messages=[{
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "根据这两张图片生成过渡动画"
            },
            {
                "type": "image_url",
                "image_url": {
                    "url": f"data:image/jpeg;base64,{image1_base64}"
                }
            },
            {
                "type": "image_url",
                "image_url": {
                    "url": f"data:image/jpeg;base64,{image2_base64}"
                }
            }
        ]
    }],
    stream=True
)

for chunk in response:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta.content, end='', flush=True)

Node.js 完整示例

安装依赖

npm install openai

TypeScript 完整实现

import OpenAI from 'openai';
import * as fs from 'fs';

class Veo31Client {
  private client: OpenAI;

  constructor(apiKey: string) {
    this.client = new OpenAI({
      apiKey: apiKey,
      baseURL: 'https://api.laozhang.ai/v1'
    });
  }

  async generateVideoFromText(
    prompt: string,
    model: string = 'veo-3.1',
    n: number = 1
  ): Promise<void> {
    try {
      const stream = await this.client.chat.completions.create({
        model: model,
        messages: [{
          role: 'user',
          content: [
            {
              type: 'text',
              text: prompt
            }
          ]
        }],
        stream: true,
        n: n
      });

      console.log(`开始生成视频... (模型: ${model})`);

      for await (const chunk of stream) {
        const content = chunk.choices[0]?.delta?.content;
        if (content) {
          console.log(`收到数据: ${content}`);
        }
      }

      console.log('视频生成完成!');

    } catch (error) {
      console.error('错误:', error);
    }
  }

  async generateVideoFromImages(
    prompt: string,
    imageUrls: string[],
    model: string = 'veo-3.1-fl'
  ): Promise<void> {
    try {
      const content: any[] = [
        {
          type: 'text',
          text: prompt
        }
      ];

      // 添加图片
      for (const url of imageUrls) {
        content.push({
          type: 'image_url',
          image_url: {
            url: url
          }
        });
      }

      const stream = await this.client.chat.completions.create({
        model: model,
        messages: [{
          role: 'user',
          content: content
        }],
        stream: true
      });

      console.log(`开始生成视频... (模型: ${model}, 图片数: ${imageUrls.length})`);

      for await (const chunk of stream) {
        const content = chunk.choices[0]?.delta?.content;
        if (content) {
          console.log(`收到数据: ${content}`);
        }
      }

      console.log('视频生成完成!');

    } catch (error) {
      console.error('错误:', error);
    }
  }

  encodeImageToBase64(imagePath: string): string {
    const imageBuffer = fs.readFileSync(imagePath);
    return imageBuffer.toString('base64');
  }
}

// 使用示例
async function main() {
  const client = new Veo31Client('sk-YOUR_API_KEY');

  // 示例1: 文生视频
  console.log('=== 示例1: 文生视频 ===');
  await client.generateVideoFromText(
    '生成一个日落时分海边的浪漫场景',
    'veo-3.1',
    2
  );

  // 示例2: 图生视频
  console.log('\n=== 示例2: 图生视频 ===');
  await client.generateVideoFromImages(
    '根据这两张图片生成平滑的过渡动画',
    [
      'https://example.com/image1.jpg',
      'https://example.com/image2.jpg'
    ],
    'veo-3.1-fl'
  );
}

main().catch(console.error);

JavaScript 简化版本

const OpenAI = require('openai');

const client = new OpenAI({
  apiKey: 'sk-YOUR_API_KEY',
  baseURL: 'https://api.laozhang.ai/v1'
});

async function generateVideo() {
  const stream = await client.chat.completions.create({
    model: 'veo-3.1-fast',
    messages: [{
      role: 'user',
      content: [
        {
          type: 'text',
          text: '生成一只猫咪在雨中散步的视频'
        }
      ]
    }],
    stream: true,
    n: 1
  });

  for await (const chunk of stream) {
    const content = chunk.choices[0]?.delta?.content;
    if (content) {
      process.stdout.write(content);
    }
  }
}

generateVideo().catch(console.error);

cURL 示例

文生视频

curl --location --request POST 'https://api.laozhang.ai/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-YOUR_API_KEY' \
--data-raw '{
    "messages": [{
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "生成两只猫和一只狗打架的视频"
            }
        ]
    }],
    "model": "veo-3.1",
    "stream": true,
    "n": 2
}'

图生视频(URL)

curl --location --request POST 'https://api.laozhang.ai/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-YOUR_API_KEY' \
--data-raw '{
    "messages": [{
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "根据两张图片生成一个完整的过渡视频"
            },
            {
                "type": "image_url",
                "image_url": {
                    "url": "https://example.com/start-frame.jpg"
                }
            },
            {
                "type": "image_url",
                "image_url": {
                    "url": "https://example.com/end-frame.jpg"
                }
            }
        ]
    }],
    "model": "veo-3.1-fl",
    "stream": true,
    "n": 1
}'

图生视频(Base64)

curl --location --request POST 'https://api.laozhang.ai/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-YOUR_API_KEY' \
--data-raw '{
    "messages": [{
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "根据图片生成动画"
            },
            {
                "type": "image_url",
                "image_url": {
                    "url": "..."
                }
            }
        ]
    }],
    "model": "veo-3.1-landscape",
    "stream": true
}'

Go 示例

package main

import (
    "context"
    "fmt"
    "io"
    "os"

    "github.com/sashabaranov/go-openai"
)

func main() {
    config := openai.DefaultConfig("sk-YOUR_API_KEY")
    config.BaseURL = "https://api.laozhang.ai/v1"
    client := openai.NewClientWithConfig(config)

    req := openai.ChatCompletionRequest{
        Model: "veo-3.1",
        Messages: []openai.ChatCompletionMessage{
            {
                Role: openai.ChatMessageRoleUser,
                MultiContent: []openai.ChatMessagePart{
                    {
                        Type: openai.ChatMessagePartTypeText,
                        Text: "生成一只可爱的小猫在玩毛线球的视频",
                    },
                },
            },
        },
        Stream: true,
        N:      1,
    }

    stream, err := client.CreateChatCompletionStream(context.Background(), req)
    if err != nil {
        fmt.Printf("Stream error: %v\n", err)
        return
    }
    defer stream.Close()

    fmt.Println("开始生成视频...")
    for {
        response, err := stream.Recv()
        if err == io.EOF {
            fmt.Println("\n视频生成完成!")
            break
        }
        if err != nil {
            fmt.Printf("Stream error: %v\n", err)
            return
        }

        if len(response.Choices) > 0 {
            content := response.Choices[0].Delta.Content
            if content != "" {
                fmt.Print(content)
            }
        }
    }
}

图生视频 Go 示例

package main

import (
    "context"
    "encoding/base64"
    "fmt"
    "io"
    "os"

    "github.com/sashabaranov/go-openai"
)

func encodeImageToBase64(imagePath string) (string, error) {
    imageData, err := os.ReadFile(imagePath)
    if err != nil {
        return "", err
    }
    return base64.StdEncoding.EncodeToString(imageData), nil
}

func main() {
    config := openai.DefaultConfig("sk-YOUR_API_KEY")
    config.BaseURL = "https://api.laozhang.ai/v1"
    client := openai.NewClientWithConfig(config)

    // 编码图片
    image1Base64, _ := encodeImageToBase64("./start.jpg")
    image2Base64, _ := encodeImageToBase64("./end.jpg")

    req := openai.ChatCompletionRequest{
        Model: "veo-3.1-fl",
        Messages: []openai.ChatCompletionMessage{
            {
                Role: openai.ChatMessageRoleUser,
                MultiContent: []openai.ChatMessagePart{
                    {
                        Type: openai.ChatMessagePartTypeText,
                        Text: "根据这两张图片生成过渡视频",
                    },
                    {
                        Type: openai.ChatMessagePartTypeImageURL,
                        ImageURL: &openai.ChatMessageImageURL{
                            URL: fmt.Sprintf("data:image/jpeg;base64,%s", image1Base64),
                        },
                    },
                    {
                        Type: openai.ChatMessagePartTypeImageURL,
                        ImageURL: &openai.ChatMessageImageURL{
                            URL: fmt.Sprintf("data:image/jpeg;base64,%s", image2Base64),
                        },
                    },
                },
            },
        },
        Stream: true,
    }

    stream, err := client.CreateChatCompletionStream(context.Background(), req)
    if err != nil {
        fmt.Printf("错误: %v\n", err)
        return
    }
    defer stream.Close()

    fmt.Println("开始生成视频...")
    for {
        response, err := stream.Recv()
        if err == io.EOF {
            fmt.Println("\n完成!")
            break
        }
        if err != nil {
            fmt.Printf("错误: %v\n", err)
            return
        }

        if len(response.Choices) > 0 {
            fmt.Print(response.Choices[0].Delta.Content)
        }
    }
}

Java 示例

使用 OkHttp

import com.google.gson.Gson;
import com.google.gson.JsonObject;
import okhttp3.*;
import okio.BufferedSource;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;

public class Veo31Client {
    private final OkHttpClient client;
    private final String apiKey;
    private final Gson gson;
    private static final String BASE_URL = "https://api.laozhang.ai/v1";

    public Veo31Client(String apiKey) {
        this.apiKey = apiKey;
        this.client = new OkHttpClient.Builder()
                .connectTimeout(30, TimeUnit.SECONDS)
                .readTimeout(60, TimeUnit.SECONDS)
                .build();
        this.gson = new Gson();
    }

    public void generateVideoFromText(String prompt, String model, int n) throws IOException {
        Map<String, Object> content = new HashMap<>();
        content.put("type", "text");
        content.put("text", prompt);

        List<Map<String, Object>> contents = new ArrayList<>();
        contents.add(content);

        Map<String, Object> message = new HashMap<>();
        message.put("role", "user");
        message.put("content", contents);

        List<Map<String, Object>> messages = new ArrayList<>();
        messages.add(message);

        Map<String, Object> requestBody = new HashMap<>();
        requestBody.put("model", model);
        requestBody.put("messages", messages);
        requestBody.put("stream", true);
        requestBody.put("n", n);

        String json = gson.toJson(requestBody);

        Request request = new Request.Builder()
                .url(BASE_URL + "/chat/completions")
                .post(RequestBody.create(json, MediaType.parse("application/json")))
                .addHeader("Authorization", "Bearer " + apiKey)
                .addHeader("Content-Type", "application/json")
                .build();

        try (Response response = client.newCall(request).execute()) {
            if (!response.isSuccessful()) {
                throw new IOException("请求失败: " + response);
            }

            System.out.println("开始生成视频...");

            BufferedSource source = response.body().source();
            while (!source.exhausted()) {
                String line = source.readUtf8Line();
                if (line != null && line.startsWith("data: ")) {
                    String data = line.substring(6);
                    if (!data.equals("[DONE]")) {
                        System.out.print(data);
                    }
                }
            }

            System.out.println("\n视频生成完成!");
        }
    }

    public static void main(String[] args) throws IOException {
        Veo31Client client = new Veo31Client("sk-YOUR_API_KEY");

        // 生成视频
        client.generateVideoFromText(
            "生成一只可爱的熊猫在竹林里玩耍的视频",
            "veo-3.1",
            1
        );
    }
}

响应格式

流式响应示例

data: {"id":"chatcmpl-xxx","object":"chat.completion.chunk","created":1234567890,"model":"veo-3.1","choices":[{"index":0,"delta":{"content":"视频生成中..."},"finish_reason":null}]}

data: {"id":"chatcmpl-xxx","object":"chat.completion.chunk","created":1234567890,"model":"veo-3.1","choices":[{"index":0,"delta":{"content":"视频URL: https://..."},"finish_reason":"stop"}]}

data: [DONE]

高级用法

批量生成多个结果

from openai import OpenAI

client = OpenAI(
    api_key="sk-YOUR_API_KEY",
    base_url="https://api.laozhang.ai/v1"
)

response = client.chat.completions.create(
    model="veo-3.1-fast",
    messages=[{
        "role": "user",
        "content": [{"type": "text", "text": "生成一个日落场景"}]
    }],
    stream=True,
    n=4  # 同时生成4个不同的视频
)

for chunk in response:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta.content)

使用不同模型对比

models = [
    "veo-3.1",
    "veo-3.1-fast",
    "veo-3.1-fl",
    "veo-3.1-landscape"
]

prompt = "生成一个美丽的山景视频"

for model in models:
    print(f"\n=== 测试模型: {model} ===")
    response = client.chat.completions.create(
        model=model,
        messages=[{
            "role": "user",
            "content": [{"type": "text", "text": prompt}]
        }],
        stream=True
    )

    for chunk in response:
        if chunk.choices[0].delta.content:
            print(chunk.choices[0].delta.content, end='')

下一步