Skip to main content
⚠️ Model Deprecation Notice
gemini-2.5-flash-image-preview preview version will be deprecated soon.
Recommended Migration to Official Release:
  • ✅ New Version: Gemini 2.5 Flash Image Edit (official, more stable)
  • 🎁 New Features: Supports custom aspect ratios (16:9, 9:16, and 10 other ratios)
  • 💰 Same Price: Still $0.025/edit
  • 🔄 Easy Migration: Just update the model name
View New Documentation →

Model Overview

Nano Banana image editing functionality is based on Google’s gemini-2.5-flash-image-preview model, implementing intelligent editing and transformation of existing images through the chat completions interface. Supports single or multiple image inputs, enabling advanced editing functions such as image composition, element addition, and style transformation.
🎨 Intelligent Image Editing
Upload image + text description = precise editing! Supports advanced features like multi-image composition, element modification, and style transformation.

🌟 Core Features

  • 🔄 Flexible Editing: Supports element addition/deletion, style transformation, image composition, etc.
  • 🎭 Multi-Image Processing: Can process multiple images simultaneously for fusion, stitching effects
  • 💰 Great Value: $0.025/edit, pay-per-use, transparent pricing
  • 🚀 Fast Processing: Completes editing in ~10 seconds on average
  • 📦 Base64 Output: Returns edited base64 image data directly

📋 Feature Comparison

FeatureNano Banana EditGPT-4o EditDALL·E 2 EditFlux Edit
Price$0.025/editToken-based$0.018/image$0.035/edit
Multi-Image Input✅ Supported✅ Supported❌ Not supported❌ Not native
Response Speed~10s~20sSlowerMedium
Return FormatBase64Base64URLURL
Chinese Support✅ Perfect✅ Perfect❌ Needs translation❌ Needs translation

🚀 Quick Start

Prerequisites

1

Create Token

Login to LaoZhang API Token Management and create a pay-per-use type tokenToken Creation Interface
2

Select Billing Type

Important: Must select “Pay-per-use” type, not “Pay-as-you-go”
3

Save Token

Copy the generated token (format: sk-xxxxxx) and replace YOUR_API_KEY in the code
💰 Exceptional Pricing Advantage
  • LaoZhang API: $0.025/edit (37.5% cheaper than official)
  • Official Price: $0.04/edit
  • Recharge Bonus: Top up $100, get +10% bonus
  • Exchange Rate Advantage: Total ~7.3 fold off official price

Basic Example - Single Image Edit

curl -X POST "https://api.laozhang.ai/v1/chat/completions" \
     -H "Authorization: Bearer sk-YOUR_API_KEY" \
     -H "Content-Type: application/json" \
     -d '{
    "model": "gemini-2.5-flash-image-preview",
    "stream": false,
    "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "add a dog to this image"
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://github.com/dianping/cat/raw/master/cat-home/src/main/webapp/images/logo/cat_logo03.png"
                    }
                }
            ]
        }
    ]
}'

Python Example - Multi-Image Composition

#!/usr/bin/env python3
import requests
import json
import base64
import re
from datetime import datetime
import sys

# Configuration
API_KEY = "sk-YOUR_API_KEY"  # Replace with your actual key (pay-per-use type)
API_URL = "https://api.laozhang.ai/v1/chat/completions"

def edit_images_with_gemini():
    """Multi-image composition editing example"""
    
    # Set request headers
    headers = {
        "Authorization": f"Bearer {API_KEY}",
        "Content-Type": "application/json"
    }
    
    # Request data - supports multiple image inputs
    data = {
        "model": "gemini-2.5-flash-image-preview",
        "stream": False,
        "messages": [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "Combine these 2 images creatively and add a Corgi dog"
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": "https://github.com/dianping/cat/raw/master/cat-home/src/main/webapp/images/logo/cat_logo03.png"
                        }
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": "https://raw.githubusercontent.com/leonindy/camel/master/camel-admin/src/main/webapp/assets/images/camel_logo_blue.png"
                        }
                    }
                ]
            }
        ]
    }
    
    print("Requesting API...")
    
    try:
        # Send request
        response = requests.post(API_URL, headers=headers, json=data)
        response.raise_for_status()
        
        print("API request successful, processing response...")
        
        # Parse response
        result = response.json()
        
        # Extract content
        content = result['choices'][0]['message']['content']
        print(f"Received content: {content[:200]}...")  # Show first 200 characters
        
        # Find Base64 image data
        # Method 1: Find standard format 
        base64_match = re.search(r'data:image/[^;]+;base64,([A-Za-z0-9+/=]+)', content)
        
        if base64_match:
            base64_data = base64_match.group(1)
            print("Found standard format Base64 data")
        else:
            # Method 2: Find pure Base64 data (long string)
            base64_match = re.search(r'([A-Za-z0-9+/=]{100,})', content)
            if base64_match:
                base64_data = base64_match.group(1)
                print("Found pure Base64 data")
            else:
                print("Error: Cannot find Base64 image data")
                print("Full response content:")
                print(json.dumps(result, indent=2, ensure_ascii=False))
                return False
        
        # Generate filename
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"edited_image_{timestamp}.png"
        
        print("Saving image...")
        
        # Decode and save image
        try:
            image_data = base64.b64decode(base64_data)
            with open(filename, 'wb') as f:
                f.write(image_data)
            
            print(f"Image saved successfully as: {filename}")
            print(f"File size: {len(image_data)} bytes")
            return True
            
        except Exception as e:
            print(f"Error: Problem saving image: {e}")
            return False
            
    except requests.exceptions.RequestException as e:
        print(f"Error: API request failed: {e}")
        return False
    except KeyError as e:
        print(f"Error: Response format incorrect, missing field: {e}")
        print("Full response content:")
        print(json.dumps(response.json(), indent=2, ensure_ascii=False))
        return False
    except Exception as e:
        print(f"Error: Unknown error: {e}")
        return False

if __name__ == "__main__":
    success = edit_images_with_gemini()
    sys.exit(0 if success else 1)

Bash Script - Batch Editing

#!/bin/bash

# Nano Banana Image Editing - Bash Version
# Supports single/multi-image editing, auto-saves base64 results

# Set API key (replace with your actual【pay-per-use】key)
API_KEY="sk-YOUR_API_KEY"

# Set output filename
OUTPUT_FILE="edited_image_$(date +%Y%m%d_%H%M%S).png"

echo "Requesting API for image editing..."

# Send curl request and save response to temp file
RESPONSE=$(curl -s -X POST "https://api.laozhang.ai/v1/chat/completions" \
     -H "Authorization: Bearer $API_KEY" \
     -H "Content-Type: application/json" \
     -d '{
    "model": "gemini-2.5-flash-image-preview",
    "stream": false,
    "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "Combine 2 images and add a Corgi dog image"
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://github.com/dianping/cat/raw/master/cat-home/src/main/webapp/images/logo/cat_logo03.png"
                    }
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://raw.githubusercontent.com/leonindy/camel/master/camel-admin/src/main/webapp/assets/images/camel_logo_blue.png"
                    }
                }
            ]
        }
    ]
}')

# Check if request was successful
if [ $? -ne 0 ]; then
    echo "Error: API request failed"
    exit 1
fi

echo "API request successful, processing response..."

# Extract Base64 image data from response
BASE64_DATA=$(echo "$RESPONSE" | python3 -c "
import json
import sys
import re

try:
    data = json.load(sys.stdin)
    content = data['choices'][0]['message']['content']
    
    # Find Base64 image data
    base64_match = re.search(r'data:image/[^;]+;base64,([A-Za-z0-9+/=]+)', content)
    if base64_match:
        print(base64_match.group(1))
    else:
        # Try to find pure Base64 data
        base64_match = re.search(r'([A-Za-z0-9+/=]{100,})', content)
        if base64_match:
            print(base64_match.group(1))
        else:
            print('ERROR: No Base64 data found')
            sys.exit(1)
except Exception as e:
    print(f'ERROR: {e}')
    sys.exit(1)
")

# Check if Base64 data was successfully extracted
if [[ "$BASE64_DATA" == ERROR* ]]; then
    echo "$BASE64_DATA"
    echo "Full response content:"
    echo "$RESPONSE"
    exit 1
fi

if [ -z "$BASE64_DATA" ]; then
    echo "Error: Cannot extract Base64 image data from response"
    echo "Full response content:"
    echo "$RESPONSE"
    exit 1
fi

echo "Successfully extracted Base64 data, saving image..."

# Decode Base64 data and save as image file
echo "$BASE64_DATA" | base64 -d > "$OUTPUT_FILE"

# Check if file was successfully created
if [ -f "$OUTPUT_FILE" ] && [ -s "$OUTPUT_FILE" ]; then
    echo "Image saved successfully as: $OUTPUT_FILE"
    echo "File size: $(ls -lh "$OUTPUT_FILE" | awk '{print $5}')"
else
    echo "Error: Image save failed"
    exit 1
fi

echo "✨ Edit complete!"

🎯 Editing Scenarios

1. Single Image Edit - Add Elements

def add_element_to_image(image_url, element_description):
    """Add new element to image"""
    headers = {
        "Authorization": f"Bearer {API_KEY}",
        "Content-Type": "application/json"
    }
    
    data = {
        "model": "gemini-2.5-flash-image-preview",
        "stream": False,
        "messages": [{
            "role": "user",
            "content": [
                {"type": "text", "text": f"Add {element_description} to this image"},
                {"type": "image_url", "image_url": {"url": image_url}}
            ]
        }]
    }
    
    response = requests.post(API_URL, headers=headers, json=data)
    return extract_base64_from_response(response.json())

# Usage example
result = add_element_to_image(
    "https://example.com/landscape.jpg",
    "a rainbow in the sky"
)

2. Multi-Image Composition - Creative Fusion

def creative_merge(image_urls, merge_instruction):
    """Creatively merge multiple images"""
    content = [{"type": "text", "text": merge_instruction}]
    
    # Add all images
    for url in image_urls:
        content.append({
            "type": "image_url",
            "image_url": {"url": url}
        })
    
    headers = {
        "Authorization": f"Bearer {API_KEY}",
        "Content-Type": "application/json"
    }
    
    data = {
        "model": "gemini-2.5-flash-image-preview",
        "stream": False,
        "messages": [{
            "role": "user",
            "content": content
        }]
    }
    
    response = requests.post(API_URL, headers=headers, json=data)
    return extract_base64_from_response(response.json())

# Usage example
images = [
    "https://example.com/cat.jpg",
    "https://example.com/background.jpg"
]
result = creative_merge(images, "Naturally blend the cat into the background")

3. Style Transfer

def style_transfer(image_url, style_description):
    """Image style transfer"""
    headers = {
        "Authorization": f"Bearer {API_KEY}",
        "Content-Type": "application/json"
    }
    
    data = {
        "model": "gemini-2.5-flash-image-preview",
        "stream": False,
        "messages": [{
            "role": "user",
            "content": [
                {"type": "text", "text": f"Transform this image into {style_description} style"},
                {"type": "image_url", "image_url": {"url": image_url}}
            ]
        }]
    }
    
    response = requests.post(API_URL, headers=headers, json=data)
    return extract_base64_from_response(response.json())

# Usage example
result = style_transfer(
    "https://example.com/photo.jpg",
    "Van Gogh painting"
)

💡 Best Practices

1. Editing Instruction Optimization

# ❌ Vague instruction
instruction = "edit the image"

# ✅ Clear and specific instruction
instruction = """
1. Add a bright moon in the upper right corner
2. Adjust overall color tone to warm tones
3. Add some firefly light effects
4. Keep the main subject unchanged
"""

2. Multi-Image Processing Strategy

def smart_multi_image_edit(images, instruction):
    """Smart multi-image editing, auto-handles different numbers of images"""
    
    if len(images) == 1:
        # Single image edit
        prompt = f"Edit this image: {instruction}"
    elif len(images) == 2:
        # Two-image composition
        prompt = f"Combine these two images creatively: {instruction}"
    else:
        # Multi-image processing
        prompt = f"Process these {len(images)} images together: {instruction}"
    
    # Build content
    content = [{"type": "text", "text": prompt}]
    for img in images:
        content.append({
            "type": "image_url",
            "image_url": {"url": img}
        })
    
    # Send request...
    return send_edit_request(content)

3. Base64 Data Processing Tools

import base64
import io
import re
from datetime import datetime
from PIL import Image

class Base64ImageHandler:
    """Base64 image processing utility class"""
    
    @staticmethod
    def extract_from_response(response_content):
        """Extract base64 data from API response"""
        patterns = [
            r'data:image/([^;]+);base64,([A-Za-z0-9+/=]+)',
            r'([A-Za-z0-9+/=]{100,})'
        ]
        
        for pattern in patterns:
            match = re.search(pattern, response_content)
            if match:
                if len(match.groups()) == 2:
                    return match.group(2), match.group(1)  # data, format
                else:
                    return match.group(1), 'png'  # default to png
        
        return None, None
    
    @staticmethod
    def save_to_file(base64_data, filename=None):
        """Save base64 data as file"""
        if not filename:
            filename = f"image_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
        
        image_data = base64.b64decode(base64_data)
        with open(filename, 'wb') as f:
            f.write(image_data)
        
        return filename
    
    @staticmethod
    def to_pil_image(base64_data):
        """Convert to PIL Image object"""
        image_data = base64.b64decode(base64_data)
        return Image.open(io.BytesIO(image_data))
    
    @staticmethod
    def from_pil_image(pil_image, format='PNG'):
        """Convert from PIL Image to base64"""
        buffer = io.BytesIO()
        pil_image.save(buffer, format=format)
        img_str = base64.b64encode(buffer.getvalue()).decode()
        return f"data:image/{format.lower()};base64,{img_str}"

⚠️ Important Notes

  1. Token Type: Must use pay-per-use type token
  2. API Endpoint: Use /v1/chat/completions, not /v1/images/edits
  3. Return Format: Returns base64 encoded editing results

🔍 FAQ

Q: How many images can be processed simultaneously?

A: There’s no hard limit theoretically, but it’s recommended not to exceed 5 images per request for optimal performance.

Q: What’s the resolution of edited images?

A: The system intelligently maintains or optimizes resolution, usually outputs high-quality images, depending on input images and editing requirements.

Q: What advantages does it have compared to other editing APIs?

A: Main advantages include: lower pricing, faster processing speed, native multi-image input support, excellent Chinese language understanding.
🎨 Pro Tip: Nano Banana editing functionality excels at understanding complex editing instructions and creative requirements. Utilizing detailed descriptions can achieve more precise editing results!
I